Strongly Universal Reversible Gate Sets

نویسندگان

  • Tim Boykett
  • Jarkko Kari
  • Ville Salo
چکیده

It is well-known that the Toffoli gate and the negation gate together yield a universal gate set, in the sense that every permutation of {0, 1}n can be implemented as a composition of these gates. Since every bit operation that does not use all of the bits performs an even permutation, we need to use at least one auxiliary bit to perform every permutation, and it is known that one bit is indeed enough. Without auxiliary bits, all even permutations can be implemented. We generalize these results to non-binary logic: If A is a finite set of odd cardinality then a finite gate set can generate all permutations of An for all n, without any auxiliary symbols. If the cardinality of A is even then, by the same argument as above, only even permutations of An can be implemented for large n, and we show that indeed all even permutations can be obtained from a finite universal gate set. We also consider the conservative case, that is, those permutations of An that preserve the weight of the input word. The weight is the vector that records how many times each symbol occurs in the word. It turns out that no finite conservative gate set can, for all n, implement all conservative even permutations of An without auxiliary bits. But we provide a finite gate set that can implement all those conservative permutations that are even within each weight class of An.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Universality of Ternary Reversible Logic Gates

A set of p-valued logic gates (primitives) is called universal if an arbitrary p-valued logic function can be realized by a logic circuit built up from a finite number of gates belonging to this set. In the paper, we consider the problem of determining the number of universal single-element sets of ternary reversible logic gates with two inputs and two outputs. We have established that over 97%...

متن کامل

Strong equivalence of reversible circuits is coNP-complete

It is well-known that deciding equivalence of logic circuits is a coNP-complete problem. As a corollary, the problem of deciding weak equivalence of reversible circuits, i.e. allowing initialized ancilla bits in the input and ignoring “garbage” ancilla bits in the output, is also coNP-complete. The complexity of deciding strong equivalence, including the ancilla bits, is less obvious and may de...

متن کامل

A New Optical Implementation of Reversible Fulladder Using Optoelectronics Devices

This study introduces a reversible optical fulladder. Also optical NOT and NOR gates are implemented through Electro-Absorption-Modulator / Photo Detector (EAM/PD) pairs, were utilized for fulfilling reversible R gate. Then, reversible fulladder was designed based on the proposed reversible optical R gate. The operation of the suggested fulladder was simulated using Optispice and it was fou...

متن کامل

A Single Universal n-bit Gate for Reversible Circuit Synthesis

Many universal reversible libraries that contain more than one gate type have been proposed in the literature. Practical implementation of reversible circuits is much easier if a single gate type is used in the circuit construction. This paper proposes a reversible n-bit gate that is universal for reversible circuits synthesis. The proposed gate is extendable according to the size of the circui...

متن کامل

A New Optical Implementation of Reversible Fulladder Using Optoelectronics Devices

This study introduces a reversible optical fulladder. Also optical NOT and NOR gates are implemented through Electro-Absorption-Modulator / Photo Detector (EAM/PD) pairs, were utilized for fulfilling reversible R gate. Then, reversible fulladder was designed based on the proposed reversible optical R gate. The operation of the suggested fulladder was simulated using Optispice and it was fou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016